Memory-based Stochastic Optimization
نویسندگان
چکیده
In this paper we introduce new algorithms for optimizing noisy plants in which each experiment is very expensive. The algorithms build a global non-linear model of the expected output at the same time as using Bayesian linear regression analysis of locally weighted polynomial models. The local model answers queries about con dence, noise, gradient and Hessians, and use them to make automated decisions similar to those made by a practitioner of Response Surface Methodology. The global and local models are combined naturally as a locally weighted regression. We examine the question of whether the global model can really help optimization, and we extend it to the case of time-varying functions. We compare the new algorithms with a highly tuned higher-order stochastic optimization algorithm on randomly-generated functions and a simulated manufacturing task. We note signi cant improvements in total regret, time to converge, and nal solution quality.
منابع مشابه
An extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative
Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...
متن کاملHYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES
Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...
متن کاملCOMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ENHANCED VERSION
Colliding bodies optimization (CBO) is a new population-based stochastic optimization algorithm based on the governing laws of one dimensional collision between two bodies from the physics. Each agent is modeled as a body with a specified mass and velocity. A collision occurs between pairs of objects to find the global or near-global solutions. Enhanced colliding bodies optimization (ECBO) uses...
متن کاملSolving single facility goal Weber location problem using stochastic optimization methods
Location theory is one of the most important topics in optimization and operations research. In location problems, the goal is to find the location of one or more facilities in a way such that some criteria such as transportation costs, customer traveling distance, total service time, and cost of servicing are optimized. In this paper, we investigate the goal Weber location problem in which the...
متن کاملMemory and Communication Efficient Distributed Stochastic Optimization with Minibatch Prox
We present and analyze statistically optimal, communication and memory efficient distributed stochastic optimization algorithms with near-linear speedups (up to log-factors). This improves over prior work which includes methods with near-linear speedups but polynomial communication requirements (accelerated minibatch SGD) and communication efficient methods which do not exhibit any runtime spee...
متن کاملSHAPE OPTIMIZATION OF STRUCTURES BY MODIFIED HARMONY SEARCH
The main aim of the present study is to propose a modified harmony search (MHS) algorithm for size and shape optimization of structures. The standard harmony search (HS) algorithm is conceptualized using the musical process of searching for a perfect state of the harmony. It uses a stochastic random search instead of a gradient search. The proposed MHS algorithm is designed based on elitism. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995